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Memory and planning rely on learning the structure of

relationships among experiences. Compact representations of

these structures guide flexible behavior in humans and animals.

A century after ‘latent learning’ experiments summarized by

Tolman, the larger puzzle of cognitive maps remains elusive:

how does the brain learn and generalize relational structures?

This review focuses on a reinforcement learning (RL) approach

to learning compact representations of the structure of states.

We review evidence showing that capturing structures as

predictive representations updated via replay offers a neurally

plausible account of human behavior and the neural

representations of predictive cognitive maps. We highlight

multi-scale successor representations, prioritized replay, and

policy-dependence. These advances call for new directions in

studying the entanglement of learning and memory with

prediction and planning.

Address

Columbia University, United States

Current Opinion in Behavioral Sciences 2020, 32:155–166

This review comes from a themed issue on Understanding memory:

Which level of analysis?

Edited by Morgan Barense and Hugo J Spiers

For a complete overview see the Issue and the Editorial

Available online 5th May 2020

https://doi.org/10.1016/j.cobeha.2020.02.017

2352-1546/ã 2020 Elsevier Ltd. All rights reserved.

Introduction
As we navigate the world we learn and update the relational

structure of experienced events. The idea that relational

representations are used as internal maps for navigation and

planning was popularized by Tolman, as ‘cognitive maps’

[1]. Early theories of cognitive maps localized them in the

hippocampus of various species and proposed that these

maps were spatial, allocentric, and Euclidean in nature [2].

However, these theories did not provide a learning mecha-

nism that could explain how cognitive maps represent the

structure of the environment. In the decades that followed,

a wealth of neural findings provided pieces to this larger

puzzle. Place cells signalled the current location of an

animal, entorhinal grid cells tiled spaces into grids, and

the environment was further summarized in
www.sciencedirect.com 
representations that each served a purpose: boundary vec-

tor cells, head direction cells, reward cells, object vector

cells, etc [3]. It was also shown that simulated experience

during offline replay can update cognitive maps [4], e.g.,

piecing together current experience with memory of past

experiences to make inferences about unseen links or

integrating structural knowledge and rewards to update

action policies [5��,6��]. Some of these findings contradict

predictions of earlier cognitive map theories. For instance,

inconsistent with merely spatial structures, place and grid

fields capture non-spatial state spaces as well [7�,8,9].
Counter to a merely Euclidean representation, it has been

shown that place field representations are path-dependent

[10] and skew asymmetrically toward goal locations [11],

and sequential trajectories to goal locations twist around

obstacles [10,12��,13,14]. Furthermore, entorhinal grid

fields are shown to capture principle components or basis

sets of state spaces [15��,16], and these grid fields can get

over-represented or warped near the locations of goals and

rewards [17,18,89] (Section 3).

The disagreement of some findings with earlier neural

theory poses a larger puzzle: how does the brain learn and

update cognitive maps and how do they represent and

generalize structures? Solving the cognitive map puzzle

calls for a theoretical and computational framework that

can capture decades of cumulative evidence, is biologi-

cally plausible, and makes testable behavioral and neural

predictions. Various theoretical proposals have attempted

to solve the puzzle with computational frameworks such

as manifolds and neural networks [19,20], topological

models [21,22], relational learning [23], and reinforce-

ment learning [15��]. While these frameworks are not

mutually exclusive, this review focuses on representation

learning using a reinforcement learning (RL) framework

to solve the cognitive map puzzle by learning structures of

the state spaces (spatial or non-spatial).

Representation learning in RL refers to learning the struc-

ture of a state space. The states can be spatial locations,

experimental stimuli, associated memory items, or task

states [24]. The RL framework can be used to learn map-

pings between observed perceptual features and states

[25], compact representations of relational and associative

structures of the state space [15��,23,26��], as well as

abstractions enabling transfer between tasks and environ-

ments [27,28]. As discussed later, while in classic model-

based RL learning the structure of states implies learning

the probabilities of transition between adjacent states [29],

other RL approaches can learn compact representations of
Current Opinion in Behavioral Sciences 2020, 32:155–166
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themulti-stepandmulti-scale structure of theenvironment

[5��,15��]. This review is focused on learning compact

representations of the structure of states that are multi-

step, multi-scale, and path-dependent using successor

representations and replay in the RL framework.

In what follows, we briefly review how representation learn-

ing and replay help acquire multi-scale predictive cognitive

maps (Section 2), how predictive representations are learned

and the role of policy-dependence in learning representa-

tions (Section 3), how the content and prioritization of

memory replay updates these representations (Section 4),

and emerging computational directions in generalization

and transfer (Section 5). In short, learning predictive repre-

sentations of structures using policy-dependent SR and

replay accounts for neural evidence (path-dependent and

non-spatial) that disagrees with earlier (euclidean and spa-

tial) cognitive map theory. This calls for further work on

learning compact and generalized representations  of struc-

tures and updating our notions of cognitive maps.

Learning predictive representations of
structures
The reinforcement learning problem is typically that of an

agent flexibly learning paths to reward and avoiding death

in a dynamic environment [30]. Many RL problems require

planning over long time scales, latent learning (used by

Tolman to support the idea of a cognitive map), and

inference in complex environments with sparse rewards.

Planning in such problems requires remembering the

relational structure of the environment. While RL is

famous for reward-based learning, it offers a framework

for learning representations in the absence of rewards.

There are different notions of learning and memory for

structures. You can remember the specific structure of your

childhood home, or the abstract structure of rooms in any

house. Here we review evidence that the RL framework

can capture both notions and their neural implementations.

Why use the RL framework to study how biological agents

learn structures? There are at least two reasons for using RL

for structure learning. First, RL is biologically plausible and

offers testable hypotheses about the neural implementa-

tion of structure learning and their correspondence to

behavior. This is an advantage over Bayesian cognitive

models that have been more commonly used to study

structure learning and causal inference, but cannot offer

an adequate account of neural implementation [31]. Sec-

ond, while model-free RL is more broadly known, RL

representation learning principles can acquire compact

and predictive representations of structures, even in the

absence of rewards. Moreover, the eigendecomposition of

predictive representations supports a powerful abstraction

of memory for structures: basis sets for compositional

representations. This review highlights howrepresentation

learning using the RL framework can account for learning
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structures, generalization, and transfer, as well as their

neural implementation.

Let us briefly review two RL agents prominent in cognitive

neuroscience: model-free and model-based RL, and why

they do not offer satisfactory solutions to the cognitive map

puzzle. A model-free agent (MF) takes actions, observes

the running average of outcomes, and stores (caches) the

discounted expected value of actions. This cached value

can be learned via temporal difference (TD) learning and

prediction errors. MF agents act fast and are computation-

ally cheap, but have no memory of structures or the rela-

tionship among states; they only store the expected value of

actions for every given state (see Equation 1). Model-based

agents (MB), on the other hand, store a relational represen-

tation of the environment in terms of the probabilities of 1-

step transitions between states. This model is later used to

compute action policies that maximize expected value.

Classic MB agents learn a representation of relationships

between states that are one step apart. This is formalized as

a one-step Transition matrix denoted as T. When faced

with a decision, MB iteratively unfolds consecutive states

taking mental actions, one step at a time, in order to

simulate different trajectories and compute and compare

their expected value. Thus, MB agents can flexibly com-

pute expected value (long-term cumulative reward) for

each possible sequence, but do so at a high computational

cost incurred by iterations [29].

In short, MF agents are fast and cheap but have no knowledge

of structures and are hence inflexible. MB agents are flexible

but using their representation of structures requires iterations

that are computationally expensive – even intractable for

realistically large decision trees [32��]. Therefore, neither

can sufficiently capture flexible and efficient use of cognitive

maps in mammals. An alternative RL approach offers a

computationally efficient intermediate solution between

MB and MF: the flexibility of MB behavior without the

intractable costs. This is the successor representation (SR)

[26��,32��,33��]. SR enables representation learning and uses

abstractions to acquire relationships between a state and all its

successor states, multiple steps away (Figure 1C). Note that

this representation captures non-adjacent dependencies,

unlike model-based RL’s one-step probability matrix

(Figure 1B). Importantly, combining SR with learning from

replay enables the agent to precompute multi-step and multi-

scale dependencies offline, increasing planning efficiency

when faced with a decision later on [26��,32��].

What is the successor representation and how is it

learned?

If an environment has n states, think of SR as a nXn matrix

of state-state relations. SR captures relational structures

by learning expected future visitations among states. For

instance, consider the 2nd row of SR matrices in

Figure 1C: the expected future visitations from state

2 to all other states are captured within each predictive
www.sciencedirect.com
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Figure 1
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Successor representation and empirical evidence. (A) Illustration of the bistro problem [5��], an RL problem where there are two bistros and the

further bistro is more rewarding. The agent needs to choose between state 1 and 2. The environment is represented as a graph of states and

associated rewards. (B) The corresponding 1-step transition matrix (T) of the Bistro problem. Computing value using T requires iteration. (C) Multi-

scale successor representations of the Bistro environment across a number of scales. Note that these are policy-independent or random-walk

SRs. Value can be computed by a linear product of an SR matrix with a vector of rewards. Since no iteration is required, this is computationally

www.sciencedirect.com Current Opinion in Behavioral Sciences 2020, 32:155–166
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horizon. This predictive horizon or scale of SR, i.e., the

furthest successor state that is ‘visible’ from every starting

state, depends on a discount parameter (0 < g < 1).

SR can be gradually learned via temporal difference (TD)

learning of the counts of visits among states and their

successor states within a given horizon (Equation 2)

[26��]. For an intuitive understanding, recall that TD

learning can be used for model-free learning of cached

value using reward prediction errors (Equation 1). SR can

be learned using successor prediction errors (Equation 2).

Note that while MF learning caches discounted expected

future value (running average of rewards), SR learning

caches discounted expected future visitations from one

state to another state (mean count visits). We address SR

learning in more detail in Section 3.

In short, the successor representation is a count-based

compact representation: it does not store transition prob-

abilities (which are < = 1, Figure 1B) like MB agents, but

the mean discounted counts of future visitations (can

be >1, Figure 1C and D). Consider again the SR in

Figure 1C. The 4th row of the learned SR matrix (M)

stores the mean discounted number of expected future

visitations to any successor state of 4, in the columns of M

(4). Therefore, when an agent is in state 4, the successor

representation of state 4 is not only one state (i.e., not

merely a matrix cell), but the entire 4th row of the SR

matrix. This is why the structure of SR is inherently

predictive: it offers predictive representations that can

solve inference and planning, which offers predictions

about the structure of underlying neural representations.

Empirical evidence for the successor representation

A series of empirical and computational studies have

tested and found support for the proposal that relational

maps are organized in memory according to the principles

of the successor representation [15��,26��,32��,37�].
Human behavioral evidence comes from two studies

specifically designed to compare the predictions of

MF, MB, SR, and hybrid models to human performance

on varieties of retrospective revaluation (reward revalua-

tion, transition revaluation, policy revaluation). Human

behavior was best captured by a model that combined SR

and replay, SR-Dyna. Sr-Dyna learns successor represen-

tations via both direct and replayed experience [32��]
(Figure 1 Legend Continued) more efficient than MB value computation. T

of .1 does not capture the relationship between states that are connected b

vector, a single SR matrix with a small predictive horizon may fail to recogn

highest reward. (D) A maze similar to those used in rodent experiments is d

[26��]. The RL problem is to navigate to a reward location, marked with a $ 

in the second matrix from the left. Two possible successor representations 

dependent SR. Random-walk SR represents the structure of the maze rega

states on the trajectory to the current goal. In both cases, the SR for state 

predictive horizon of the current state. (E) Computational support and empi

electrophysiology. The successor representation may offer a general princip

reprinted from cited papers [15��,26��,32��,34,35,36,37�]. Note that these are

for detail.)
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(see Section 4). A normative study [26��] showed that the

SR-Dyna class of algorithms outperform other normative

models. It has also been shown that SR helps discover

subgoals for planning in hierarchical reinforcement learn-

ing (HRL) problems [36]. SR-Dyna could be applied to

the problem of building models that discover hierarchical

structures more efficiently via offline replay.

Capturing structures and spectral clustering

The successor representation has theoretically rich prop-

erties. In linear algebra, dimensionality reduction, and

graph theory, the SR matrix is mathematically equivalent

or related to concepts such as the matrix dissolvant,

fundamental matrix, communicability distance, and the

inverse of the graph Laplacian. The graph Laplacian is

computed by subtracting a graph’s adjacency matrix,

where there is a 1 for an edge between nodes i and j,
from its degree matrix, a di (see Equation 3, the graph

Laplacian is shown the be captured by I-T). In graph

theory, the eigenvectors of the graph Laplacian are widely

used across the sciences for spectral clustering, graph

diffusion, and community detection [38]. Spectral clus-

tering detects communities of connected nodes based on

their edges. Such community detection can serve abstrac-

tion and detection of efficient paths between any two

nodes. Spectral clustering is possible thanks to the eigen-

values (spectrum) of the graph Laplacian. Intuitively,

eigenvectors of the Laplacian form a compressed repre-

sentation of the structure of graph, or the relational space.

Matrix compression can be applied to achieve compact

and abstract representations by setting eigenvector com-

ponents with small eigenvalues (less influence) to zero,

hence ignoring them. If we consider the state space a

graph of connected states, the SR approximates the

inverse of the graph laplacian (Equation 3). Mathemati-

cally, the eigenvectors of SR tile the state space into grid-

like representations. The linear combination of these

grids can help solve problems involving the partitioning

and chunking of experience, subgoal discovery, graph

diffusion, and communicability in graphs and complex

networks [39]. These properties lend well to understand-

ing hippocampal cognitive maps, discussed next.

Neural implementation of the successor representation

How is the SR implemented in the brain? What is the

correspondence between learned SR and neural
he interesting property of the bistro problem is that an SR with a scale

ut furthest apart, i.e., states 2 and 8. When combined with the reward

ize state 2 as the optimal starting state leading to state 8, with the

epicted as a grid-world, where every location corresponds to a square

sign on the right side. Assume that an agent is in the location depicted

for this state are depicted to the right: Random-walk SR and policy-

rdless of the current goal. Policy-dependent SR over-represents the

s, M(s), activates the representation of successor states within a given

rical evidence from rodents and humans behavior, fMRI, and

le for the organization of memory representations. (Figures in E are

 schematic summaries and readers should refer to the original papers
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representation? Recall that the sth column of SR repre-

sents the predecessors of state s, i.e., what predicts this

current state, its past. Now when the agent is in state s, the

sth row of SR is the cached representation of the dis-

counted successors of state s: what state s predicts, its

future. This idea makes predictions about the neural

similarity relationships among different states.

Let us return to hippocampal cognitive maps, and con-

sider place fields. A place field is activated when the agent

is in the field’s preferred location or is approaching it

within a given horizon. A recent study compared rodent

hippocampal and entorhinal electrophysiology results

with SR, and shows that SR’s columns simulate place

fields. Moreover, they showed that SR’s eigenvectors look

like grid field representations [15��]. Recall that eigen-

vectors of a matrix are linearly uncorrelated principal axes

of the state space, or a smaller state space within which all

information in the matrix can be captured as the linear

combination of these axes. It has thus been suggested that

entorhinal grid cells encode a low-dimensional basis set

that extracts the multi-scale structure of predictive repre-

sentations for hierarchical planning and subgoal proces-

sing [16]. Section 5 notes further advances of these topics

in generalization and transfer.

There are two other properties of place fields that any

sufficient computational account needs to capture. The

first is the observation that place fields fire asymmetri-

cally and are skewed towards goal locations [11,15��].
This asymmetry would be expected of predictive

representations as well. Since SR-Dyna learns visita-

tion-counts during experience and prioritizes replay of

trajectories toward goals, it will learn higher expected

future visitations for locations that are expected to be

visited more often (Figure 1D, rightmost). This prop-

erty can capture the asymmetry of place fields, and is

related to policy-dependent representations discussed

in Section 3. The second property that any account of

place fields needs to capture is that they are on average

larger along the hippocampal long axis towards the

anterior (or ventral) hippocampus. Multi-scale succes-

sor representations (MSR), learned simultaneously

with different discount parameters and corresponding

to different predictive horizons (Figure 1C) can

capture this property [5��]. Furthermore, it has been

shown that the derivative of the multi-scale ensemble

of SR matrices can be used to reconstruct an entire

trajectory of future states and account for path-

dependent distance to goal representations  in the

medial temporal lobe [5��].

Can SR’s predictions about the structures of neural simi-

larities be tested using functional magnetic resonance

imaging (fMRI)? A number of studies have compared

hypothesis similarity structures with the similarity among

fMRI patterns associated with different states. Consistent
www.sciencedirect.com 
with predictions, SR could account for fMRI pattern

similarity in statistical learning [35] and learning non-

spatial relational concepts [37�]. A recent fMRI study has

shown that during planned hierarchical navigation, pre-

dictive horizons of small to medium lengths are repre-

sented along the long axis of the hippocampus (with

longer horizons in anterior hippocampus of humans,

corresponding to ventral hippocampus in rodents) and

the prefrontal cortex (PFC) hierarchy [40,41]. The largest

horizons were represented in gradually more anterior

regions of the rostral and orbital prefrontal cortex, corre-

sponding to Brodmann areas 10 and 11 [40,41](Figure 2).

As noted in Sections 3 and 5, prefrontal representations

are not merely representations of larger scales. Similar

regions have been reported in the representation of

prospective tasks in human fMRI [86,87]. Thus, prefron-

tal and entorhinal representations may compute and

represent generalization and basis sets of structures, task

sets, and schema [3,23,42].

These and other empirical evidence have been taken to

suggest the successor representation as a principle for

memory organization and temporal context (Figure 1E)

[34]. However, there are a variety of algorithms for

learning the structure of state-spaces using the SR, and

they generate different behavioral and neural predictions

depending on at least three factors. The first is whether

SR acquired during goal-directed experience is different

from SR computed analytically or with random walks

(Section 3). This determines the policy-dependence of

the learned representations. The second regards whether

and how memory replay updates SR offline, stitching

together distal experiences to infer and update unseen

relations (Section 4).

Learning structures and policy-dependence
How does an agent learn the graph structure of the state

space while navigating it? A temporal difference (TD)

learning approach, which is typically used to learn and

update state-action values, can be applied to the learning

and updating of state-state structures irrespective of

rewards. Before showing how, let us recall how TD

learning can update cached value in model-free RL in

Equation 1:

VðsÞ ¼ VðsÞ þ aðRobserved þ gVðsnewÞ � VðsÞÞ
Model � free RL : TD gradually updates cached value for state s:

Equation 1 shows how the value of state s is gradually

learned using a simple value-based TD update [30]: a

learning rate is applied to the observed reward it leads to

plus the prediction error (i.e., the difference between the

discounted value of the next state and the present state).

TD learning can also be used to gradually update

expected counts of visits from a state to its successors.

Equation 2 shows how the SR can be gradually learned
Current Opinion in Behavioral Sciences 2020, 32:155–166
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Figure 2
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Multiscale successor representations. Successor representations with different predictive horizons from start to goal location are depicted with

different colors. Predictive horizons are represented in cold-warm color shades (blue-orange) along the hippocampal long axis as well as the

prefrontal cortex (PFC). The horizon of spatial representations are depicted with squares of different sizes: when the agent is in the start state,

nearby successor states are represented in blue shades and further successors are in warmer shades. Their size of the spatial tiles capture the

discount applied to states further away. Corresponding shades are used in the graph depiction of abstraction across the scales of representation.

Such a multi-scale predictive structure in the agent’s representations of the environment readily enables hierarchical planning as follows. Planning

at larger horizons uses the large scale PFC representations, while fine-grained plans are hierarchically unfolded backward down to the smallest

horizon of place fields in posterior hippocampus. Note that prefrontal and entorhinal representations are not merely representations of larger

scales, but may compute and represent generalized structures, such as grid fields and schema (see Sections 3 and 5). Reprinted from Brunec,

Momennejad (2019)[40].
using a simple count-based TD update. Each time the

agent starts from a starting state s, and arrives to a new

state snew, the count of expected visitations to the new

state and its successors are updated. As such, gradually a

“successor representation” is learned: a predictive matrix

of how often we expect to visit snew and its successors if we

are currently in s (Figure 1). TD updates require a

discount parameter (0 < g < 1) that determines the scale

or predictive horizon of the SR, and a learning rate

(0 < a < 1) applied to the successor prediction error

(the difference between the expected successors of s
and the discounted successors of the new state), as follows

[26��,43��].

MðsÞ ¼ MðsÞ þ a
�
onehotðsnewÞ þ gMðsnewÞ � MðsÞ

�

Representation learning : TD gradually updates the

success or representation for state s:

Here M denotes the successor representation matrix (or

predictive representation) at scale. Here onehot(snew) is a

vector of all zeros with a 1 for successor state snew. When the

agent starts from s and visits state snew, onehot(snew) adds one
Current Opinion in Behavioral Sciences 2020, 32:155–166 
visit to the count of visits to snew in the s’th row of M (learning

rates apply). The subtraction of the expected successors of s
(the current state) from the discounted successors of state

snew (discounted snewth row of M minus the sth row of M) is

the “successor prediction error”. It is used for temporal

difference learning of SR. Gradually, the SR matrix is

updated via TD learning. Notably, due to more visitation

counts to states that fall on the reward policy, successor

states along the trajectory to rewards and bottlenecks gain

higher SRs (mean expected discounted visits). Hence, this

manner of learning leads to a policy-dependent SR.

As mentioned earlier, a key difference in successor

representation learning methods is whether the learning

is policy-dependent or policy-independent. Policy-

independent learning of a graph structure (e.g., during

navigation, see also [91]) is like learning by taking random

walks on a graph in all directions (Figure 1). The agent has no

reason to prefer a policy that favors one direction or trajectory

more than another, and hence the structure of the graph as a

whole is learned. If goals or rewards were present, a random

walk would emerge while exploring and learning in an open

field where rewards are uniformly distributed.Given enough

experience, policy-independent or random-policy SR can be
www.sciencedirect.com
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learned directly from the transition matrix as in Equation 3

(Figure 1).

M ¼ I � gTð Þ�1 ð3Þ

Random-walk policy SR can be computed using the

transition matrix

Thus, SR can be either gradually learned or directly

computed from an MB learner’s transition matrix, T.

Note that when rewards are not uniformly distributed

across the state space, when there are obstacles, or when

the agent visits some states more than others, the succes-

sor representation that is gradually learned via TD using

Equation 2 no longer converges to the one computed from

T in Equation 3. In other words, when the agent’s policy

is to visit rewarded locations and bottleneck states (such

as doors) more often than others, the SR can no longer be

computed as if the agent were taking a random walk.

Policy-dependence and path-dependence

An important property of policy-dependent SR is that,

consistent with path-dependent representations reflected

in behavior and the hippocampus [10], its estimate of

distance to goal would be non-Euclidean. This bears

other predictions about vectorial and distance to goal

representations [44]. Namely, policy-dependent goal-

vectors, unlike previous suggestions, would not point

to the goal location through a wall that obstructs it, but

twist around barriers. This is consistent with recent

findings in vectorial goal-representations in the hippo-

campus of flying bats [12��]. It may also be related to the

behavioral finding that circumnavigation led to under-

estimating travel times and expanding spatial distance

[45]. Furthermore, recall that SR can capture place fields

and SR’s eigenvectors capture grid fields that tile the state

space [15��]. These eigenvectors can compress represen-

tations, encoding a low-dimensional basis set of predic-

tive representations of the state space [16]. Notably, in

some cases the eigenvectors of policy-independent and

policy-dependent SR will likely be different, making the

prediction that the grid fields of policy-dependent and

random-policy SR may be different. Policy-dependent

SR values increase as an agent approaches bottlenecks

and goal locations. As such, the eigenvectors of the policy-

dependent SR may lead to grid fields that over-represent

often-visited states, tiling “more space” near highly vis-

ited locations [15]. This prediction is consistent with

recent evidence showing grid fields are attracted to

reward locations [17,18]. Future studies and reviews

are required to test and compare these predictions to

neural and behavioral findings.

As we will see in the next section, prioritized replay as

well contributes to policy-dependence. Even when the

number of visitations to all locations are empirically
www.sciencedirect.com 
controlled [32��], replay prioritization can simulate

goal-related states (e.g., reward location, subgoals and

doors, locations on the path to reward) more often than

others. Preferential replay of goal-related states leads to

higher number of virtual visitations to those states during

replay cycles. Since the agent is learning and updating SR

during offline replay, a policy-dependent SR map

emerges [26��], over-representing goal-directed states

even though the agent’s experience is controlled.

Learning structures via replay and
prioritization
Often learning the relational structure of the environment

requires combining current experience with our memory

of past experiences. This can be mediated by memory

replay [4,46]. Rodent electrophysiology shows that while

animals rest, or eat, there are brief high-frequency net-

work oscillations in the hippocampus known as ripples

[47], accompanied by neural activity patterns that sweep

trajectories of place cells forwards and backwards at

compressed time-scale [48,49]. These replayed trajecto-

ries are not merely memories of recent experience: they

are task-related prospective trajectories to remembered

goals [50] that are replayed backward when they encoun-

ter prediction errors [49]. They help capture the structure

of the environment and support learning, prediction,

inference, and planning [21,51–53].

In reinforcement learning, the proposal of planning as

learning from memory replay has been captured in a

family of models called Dyna [30,43��], in which an

RL agent is trained during both direct experience as well

as simulated experience during offline replay. Replay

here is simulation of experience by replaying past epi-

sodes stored in memory, or reconstructing experience

from a matrix of transitions. Table 1 summarizes four

replay-based learning algorithms, including Dyna-Q

[43��], Dyna-Q+ [30], prioritized sweeping [6��,54,55],
and SR-Dyna [26��,32��]. In Dyna-Q, a model-free Q

learner agent learns cached values of actions both during

experience, and offline via replayed trajectories from a

model-based transition matrix. Dyna-Q + gives a bonus to

sampling states that have not been recently explored.

This enables shortcut discovery, a caveat in Dyna-Q as it

greedily maximizes value, missing the opportunity to

discover new shortcuts. In prioritized Dyna, replay prior-

ity is given to experiences where prediction errors

occurred, as well as their predecessors and successors.

In SR-Dyna, SR’s predictive representations are learned

both online during direct experience and offline via

memory replay. A more recent machine learning study

offers a similar approach to SR-Dyna, using successor

representations and simulated experience to learn struc-

tures in partially observable environments [92].

Empirically it has been shown that SR-Dyna outperforms

MF, MB, MF-MB, Dyna-Q(+), prioritized Dyna, and
Current Opinion in Behavioral Sciences 2020, 32:155–166
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Table 1

Replay-based (Dyna) algorithms in reinforcement learning.

Algorithm Learning and prioritization Advantage Caveat

Dyna-Q

[43��]
MF Q-learner learns and acts during experience, is trained by offline replay

of random states using MB

Fast, but flexible New shortcuts

Dyna-Q+

[30]

Dyna-Q, but not random: bonus for exploring states that have not

been visited for a while

Finds new shortcuts Needs many samples,

HRL

Prioritized

sweeping

[6��,54,55]

Events with unsigned prediction error (PE) during experience put

in a priority queue. Later, states on trajectories leading to and from

the PE-tagged state are given priority for replay.

HRL solutions Large decision trees

SR-Dyna

[26��,32��]
learns successor representations through experience and updates

SR via offline episodic replay, prioritizes recent experience

Human-like retrospective

revaluation

Discrete states, future:

feature based
pure SR (without replay) in capturing human retrospec-

tive revaluation behavior [26��,32��]. One human fMRI

study in particular focused on how prioritizing replay by

prediction errors affected planning behavior. Consistent

with any prioritized Dyna model, larger unsigned predic-

tion errors were followed by more offline replay, and

offline replay of predecessors of states tagged with PE

was correlated with future revaluation behavior [6��]. The

correlation between fMRI evidence of replay and revalu-

ation behavior was more pronounced in the condition

with higher reward variance, or uncertainty. In the real

world, rewards and transition structures often vary as well:

your favorite food truck moves elsewhere, and the subway

maps rewire more often than desired. Future studies are

required to better understand the role of uncertainty and

volatility of rewards and transition structures on offline

replay and prioritization.

Notably, the direction of replay sequences as well as their

optimal prioritization can be computed using the succes-

sor representation itself. In Figure 1C, the SR matrix’s 5th
column represents its predecessors or states that predict it

(its past, states 1 and 3), and the 2nd row represents the

successors of state 2 or the states that 2 predicts (its future,

states 4, 6, 7, and 8). Note that depending on the scale of

the SR matrix, the horizons of past and future within

which predecessors and successors are represented differ.

A recent model of prioritized forward and reverse replay

leverages these properties and consults SR to compare the

value of taking different mental actions during planning

in order to determine what replay content maximizes

planning outcomes [56].

Offline replay is also a key memory process contributing

to generalization and consolidation [57,58]. Human

and animal neural evidence supports a role for wake

and sleep memory replay in generalization and commu-

nity detection [59,60], inference [52,61] especially of

unseen relations among states, problem solving, and

memory consolidation [62,63]. Deep reinforcement learn-

ing algorithms also benefit from prioritized replay in

generalization, discovery, and adversarial self-learning

[64–66]. Different replay algorithms differ with regards
Current Opinion in Behavioral Sciences 2020, 32:155–166 
to how memories are stored and the model from which

they generate simulated experience. This includes how

far into the past memories are replayed (e.g., an expo-

nential decay may prioritize replaying more recent mem-

ories, or replay may be limited to the past 2000 episodes),

and whether replayed memories are in sequential or

random order. Future experiments with hierarchical

structures, uncertainty, and sparse rewards are required

to test different replay and sampling prioritization meth-

ods against human and animal performance. Further-

more, future modeling work is required to capture the

relationship between hippocampal and cortical replay,

sharp wave ripples and neural oscillations, and behavioral

outcomes.

Abstraction, generalization, and transfer
Humans learn structures at multiple levels of abstraction.

We can remember the specific structure of our childhood

home, as well as the generalized structure of a house or an

airport. We also use abstract structures to learn and

discern new environments faster. Upon looking at an

outlandish indoor scene in a sci fi movie, we can typically

guess if it is a kitchen or an airport. Such higher levels of

structural abstraction are sometimes discussed as schema,

and have been studied in the medial prefrontal cortex

[67]. Learning structures with the RL framework can

capture both memory of specific structures and memory

for generalized structures as well as their neural imple-

mentations. Here we briefly review a number of ways in

which compression of predictive representations can

benefit abstraction and transfer.

Successor feature abstraction and transfer

Most RL approaches assume learning from discrete

states. However, we experience the world as a continuous

series of dynamic features rather than discrete states.

Different tasks and goals depend on different dynamic

features of the same environment. An important chal-

lenge for RL algorithms concerns decomposing complex

task structures to learn relevant feature weights and

generalizing predictive feature representations to

improve the learning of unseen tasks [68]. Successor

feature learning offers a solution. If different tasks can
www.sciencedirect.com
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be done in the same environment (e.g., at home), decou-

pling the dynamics of the environment (e.g. doors open to

rooms, obstacles block passage) from specific goals and

rewards (e.g., food in the kitchen) enables the algorithm

to consider not one but a set of policies during policy

improvement [28]. Other than transfer across tasks with

different reward functions [27], successor features have

been shown to support behavior shown by classic model-

based and model-free reinforcement learning models as

well [69]. A recent model shows that hippocampal place

cell firing can be captured using successor features. Place

cells are learned from a basis set of known neurobiological

features (i.e., boundary vector cells and grid cells) that

offer low-dimensional representations of successor fea-

tures [70].

Options

While successor feature learning enables generalization

and transfer over features, the most challenging RL

problems regard hierarchically structured environments

in which rewards are sparse. A benchmark example is

Atari’s Montezuma’s revenge, which most deep learning

models fail to solve [71�]. A series of solutions come from

the options framework in hierarchical reinforcement

learning (HRL). Through options, agents can abstract

policies or temporally extended series of primitive actions

(e.g., move one square left) that simplify hierarchical goal

discovery (e.g., “go forward until wall”, “climb ladder

up”, “find the key”, “use key to open door”) [72��,73,74].
Recent evidence shows the use of options in human

behavior in hierarchical tasks and transfer [75]. However,

discovering a useful set of options is a challenging prob-

lem. One way to identify useful options and subgoals is

via states that are frequently visited [72��]. This is why

count-based representation learning, such as deep suc-

cessor representation learning and successor feature

learning, have been shown to support option discovery

[28,76��,77]. As discussed earlier, the eigen-decomposi-

tion of count-based predictive representations can give us

the basis sets for the entire state space. Similarly, the

eigen-decomposition of options leads to “eigen-options”,

or compact abstracted options that factorize temporarily

extended policies. Eigen-options simplify planning in

complex environments into more manageable compo-

nents. They allow transfer of learned structures as well:

solutions to different tasks can be captured as the linear

combination of eigen-options [76��,78,79��]. Mathemati-

cally, this powerful property of working with eigen-

options is closely related to hierarchical decomposition

and discovery of sub-task structure usingnon-negative

matrix factorization [90].

Intrinsic motivation

Learning in the real world often takes place without a

specific goal and with sparse rewards that are not imme-

diately reinforced. Such learning requires intrinsically

motivated information seeking and structure discovery
www.sciencedirect.com 
[80]. Intrinsic motivation has been an active topic in

machine learning and RL, discussed in terms of intrinsic

reward, intrinsic value, drive, and curiosity-driven learn-

ing [81�,82�]. Intuitively, intrinsic motivation can be

thought of in terms of any learning or inference approach

that decomposes the environment into task-independent

components, which can be later combined to estimate

value once a new task or goal is introduced. It has been

shown that Laplacian eigenmaps can function as intrinsic

motivation. This is welcome news for a model that uses

the SR. because Laplacian eigenmaps have been shown

to be the equivalent of the eigenvectors of SR and linear

slow feature analysis [15��,76��,83]. In the context of value

function estimation, Laplacian eigenmaps are also

knowm as proto-value function. When computing the

proto-value function, an environment is decomposed into

basis functions of successor features and options, the

linear combinations of which could compute any given

task’s value function and hence serve as intrinsic motiva-

tion [79��,84]. It has been shown that approximating

proto-value function using eigen-options (mentioned

above) serves as intrinsic motivation to solve problems

such as Montezuma’s revenge [85]. These emerging

findings open up exciting new directions for studying

the role of structure discovery in planning in uncertain

environments [93]. Such an endeavor can lead to a novel

biologically plausible understanding of the link between

learning and memory processes and intrinsic motivation.

While RL approaches to structure learning successfully

capture behavioral and neural evidence for learning rela-

tional and statistical associations, one open question is

how they can account for causal inference. Another open

question is: what kinds of structures or graphs can a given

learning algorithm learn and what are its limits of struc-

ture learning? How do these limits compare to the limits

of human structure learning? A possible angle to approach

these questions from is using the successor feature and

eigen-option framework in RL.

Computational psychiatry
An important application of models of structure represen-

tation is in computational psychiatry. Many psychiatric

disorders can emerge from learning maladaptive models

of the environment’s structures, or having beliefs that

lead to using otherwise useful models maldaptively. For

instance, in the SR-Dynra framework prioritizing the

replay of memories with negative prediction error can

lead to a predictive internal map that over-represents

trajectories to negative outcome and under-represents

trajectories to reward. Using such a maladaptive map

for behavior can simulate anxiety, avoidance, and freezing

behavior. On the other hand, an agent may have an

accurate model of the world but a maladaptive pessimistic

belief about the accuracy of these models. A recent

computational study has shown that such an agent’s

behavior simulates avoidance behavior akin to anxiety
Current Opinion in Behavioral Sciences 2020, 32:155–166
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[88]. Future modeling and empirical work is required to

understand the role of structure learning in pathological

behavior.

Conclusion
Flexible memory and planning behavior rely on learning

compact representations of environmental structures.

This review focuses on using reinforcement learning

for learning the structure of state spaces – irrespective

of rewards. As an agent navigates an environment, a

count-based representation learning approach can gradu-

ally learn compact representation of relationships in the

graph of states (by learning how often a state leads to its

successor states). This learned predictive representation

of successor states can be updated via prioritized offline

replay of past experience, enabling inference of unseen

relationships among states. Factorization of this predic-

tive representation offers abstract properties of the rela-

tional structure such as grids, bottlenecks, subgoals, etc.

We summarized evidence that predictive representation

learning and replay capture cumulative neural and behav-

ioral evidence. We noted emerging topics in generaliza-

tion and transfer. This rich body of studies calls for further

computational work on structure learning, matched

experimental work, and a computational update to earlier

cognitive map theory.
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